Accelerated Subspace Iteration Method for Protein Normal Mode Analysis
نویسندگان
چکیده
منابع مشابه
The subspace iteration method in protein normal mode analysis
Normal mode analysis plays an important role in relating the conformational dynamics of proteins to their biological function. The subspace iteration method is a numerical procedure for normal mode analysis that has enjoyed widespread success in the structural mechanics community due to its numerical stability and computational efficiency in calculating the lowest normal modes of large systems....
متن کاملAn Accelerated Subspace Iteration Method
The analysis of a number of physical phenomena requires the solution of an eigenproblem. It is therefore natural that with the increased use of computational methods operating on discrete representations of physical problems the development of efficient algorithms for the calculation of eigenvalues and eigenvectors has attracted much attention [l]-[8]. In particular, the use of finite element a...
متن کاملThe subspace iteration method – Revisited
The objective in this paper is to present some recent developments regarding the subspace iteration method for the solution of frequencies and mode shapes. The developments pertain to speeding up the basic subspace iteration method by choosing an effective number of iteration vectors and by the use of parallel processing. The subspace iteration method lends itself particularly well to shared an...
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملSubspace Iteration for Eigenproblems
We discuss a novel approach for the computation of a number of eigenvalues and eigenvectors of the standard eigenproblem Ax = x. Our method is based on a combination of the Jacobi-Davidson method and the QR-method. For that reason we refer to the method as JDQR. The eeectiveness of the method is illustrated by a numerical example.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2009
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2008.12.2078